Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus.

نویسندگان

  • Daniel K Mulkey
  • Ian C Wenker
  • Orsolya Kréneisz
چکیده

Central chemoreception is the mechanism by which CO2/pH-sensitive neurons (i.e., chemoreceptors) regulate breathing in response to changes in tissue pH. A region of the brain stem called the retrotrapezoid nucleus (RTN) is thought to be an important site of chemoreception (23), and recent evidence suggests that RTN chemoreception involves two interrelated mechanisms: H+-mediated activation of pH-sensitive neurons (38) and purinergic signaling (19), possibly from pH-sensitive glial cells. A third, potentially important, aspect of RTN chemoreception is the regulation of blood flow, which is an important determinate of tissue pH and consequently chemoreceptor activity. It is well established in vivo that changes in cerebral blood flow can profoundly affect the chemoreflex (2); e.g., limiting blood flow by vasoconstriction acidifies tissue pH and increases the ventilatory response to CO2, whereas vasodilation can wash out metabolically produced CO2 from tissue to increase tissue pH and decrease the stimulus at chemoreceptors. In this review, we will summarize the defining characteristics of pH-sensitive neurons and discuss potential contributions of pH-sensitive glial cells as both a source of purinergic drive to pH-sensitive neurons and a modulator of vasculature tone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIGHLIGHTED TOPIC Central CO2 Chemoreception in Cardiorespiratory Control Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus

Mulkey DK, Wenker IC, Kréneisz O. Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus. J Appl Physiol 108: 1433–1439, 2010. First published January 21, 2010; doi:10.1152/japplphysiol.01240.2009.—Central chemoreception is the mechanism by which CO2/pH-sensitive neurons (i.e., chemoreceptors) regulate breathing in response to changes in tissue pH. A re...

متن کامل

Central chemosensitivity, sleep, and wakefulness

Neurons in many regions of the lower brain are chemosensitive in vitro. Focal acidification of these same and other regions in vivo can stimulate breathing indicating the presence of chemoreception. Why are there so many sites for central chemoreception? This review evaluates data obtained from unanesthetized rats at three central chemoreceptor sites, the retrotrapezoid nucleus (RTN), the medul...

متن کامل

Neurokinin-1 receptor-expressing neurons in the ventral medulla are essential for normal central and peripheral chemoreception in the conscious rat.

Neurokinin-1 receptor immunoreactive (NK1R-ir) neurons and processes are widely distributed within the medulla, prominently at central chemoreceptor sites. Focal lesions of NK1R-ir neurons in the medullary raphe or the retrotrapezoid nucleus partially reduced the CO(2) response in conscious rats. We ask if NK1R-ir cells and processes over a wide region of the ventral medulla are essential for c...

متن کامل

Julius H. Comroe, Jr., distinguished lecture: central chemoreception: then ... and now.

The 2010 Julius H. Comroe, Jr., Lecture of the American Physiological Society focuses on evolving ideas in chemoreception for CO₂/pH in terms of what is "sensed," where it is sensed, and how the sensed information is used physiologically. Chemoreception is viewed as involving neurons (and glia) at many sites within the hindbrain, including, but not limited to, the retrotrapezoid nucleus, the me...

متن کامل

Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism.

Central chemoreception is the mechanism by which CO(2)/pH sensors regulate breathing in response to tissue pH changes. There is compelling evidence that pH-sensitive neurons in the retrotrapezoid nucleus (RTN) are important chemoreceptors. Evidence also indicates that CO(2)/H(+)-evoked adenosine 5'-triphosphate (ATP) release in the RTN, from pH-sensitive astrocytes, contributes to chemoreceptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 108 5  شماره 

صفحات  -

تاریخ انتشار 2010